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Abstract: In dye-sensitized solar cells (DSSCs), the counter electrode (CE) plays a crucial role
as an electron transfer agent and regenerator of the redox couple. Unlike conventional CEs that
are generally made of glass-based substrates (e.g., FTO/glass), polymer substrates appear to be
emerging candidates, owing to their intrinsic properties of lightweight, high durability, and low cost.
Despite great promise, current manufacturing methods of CEs on polymeric substrates suffer from
serious limitations, including low conductivity, scalability, process complexity, and the need for
dedicated vacuum equipment. In the present study, we employ and evaluate a fully additive
manufacturing route that can enable the fabrication of CEs for DSSCs in a high-throughput and
eco-friendly manner with improved performance. The proposed approach sequentially comprises:
(1) material extrusion 3-D printing of polymer substrate; (2) conductive surface metallization through
cold spray particle deposition; and (3) over-coating of a thin-layer catalyzer with a graphite pencil.
The fabricated electrodes are characterized in terms of microstructure, electrical conductivity, and
photo-conversion efficiency. Owing to its promising electrical conductivity (8.5 × 104 S·m−1) and
micro-rough surface structure (Ra ≈ 6.32 µm), the DSSCs with the additively manufactured CEs led
to ≈2.5-times-higher photo-conversion efficiency than that of traditional CEs made of FTO/glass.
The results of the study suggest that the proposed additive manufacturing approach can advance the
field of DSSCs by addressing the limitations of conventional CE manufacturing platforms.

Keywords: dye-sensitized solar cells (DSSC); counter electrode; additive manufacturing; 3D printing;
cold spray; polymer metallization

1. Introduction

Renewable energy technologies are of particular interest to solving the global energy
crisis. Among others, solar energy emerges as the most promising and viable energy
source owing to its abundance, low cost, and safety [1]. To harvest solar energy, photo-
voltaic (PV) technology involving solar cells plays a pivotal role in harnessing solar energy,
converting it into electric energy. Solar cells are categorized into three main generations:
(i) first-generation solar cells made of crystalline silicon; (ii) second-generation solar cells,
commonly referred as thin-film solar cells: and (iii) third generation solar cells, which are
based on novel materials [2]. First-generation silicon-based solar cells present challenges
due to their rigid, fragile, and low-absorption properties. Second generation thin-film
solar cells suffer from high costs and a scarcity of active materials, long payback, and
poor performance in cloudy and shadowy conditions [3,4]. Third-generation solar cells
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are considered to be a pragmatic replacement for both first and second generation solar
cells by comprising novel materials such as organic dyes, conducting polymers, and nanos-
tructured materials. Among third-generation solar cells, dye-sensitized solar cells (DSSCs)
have gained considerable attention owing to their inherent advantages, including low
material cost, tunable optical properties, flexibility, and good performance in a wide range
of lighting conditions [5,6]. Furthermore, recent advancements in bifacial DSSC technology
have attracted considerable attention, enabling the absorption of sunlight from both front
and rear sides [7].

A typical DSSC, as shown in Figure 1a, is mainly composed of a photoanode
(i.e., contains a dye-sensitized porous semiconductor such as titanium dioxide (TiO2)),
an electrolyte, and a counter electrode. In the energy conversion process, first, light
is absorbed by the sensitizer (i.e., dye molecules on a TiO2 layer of the photoanode).
This photoexcitation generates excited electrons, which are then injected into the con-
duction band of the semiconductor. The injected electrons further travel through the
semiconductor towards the photoanode, and then reach the counter electrode (CE). CEs act
as a catalyst and inject the electrons into the electrolyte (i.e., iodine/tri-iodine redox couple)
by reducing the electrolyte. Lastly, the electrons reach the dye molecules again due to the
diffusion process, completing a cyclic circuit [3,8,9].
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As for DSSC architecture, the CE—which is a conductive substrate with a thin layer of
catalytic film on it—plays a critical role in completing the circuit by acting as the catalyst
for reducing the electrolyte to regenerate dye molecules [4]. As such, the CE is a critical
component in DSSCs, improving the efficiency of the cell [10]. A suitable CE should possess
a high electrical conductivity, large surface area, porous surface nature, excellent stability,
catalytic activity, and good mechanical adhesion for achieving remarkable photo-conversion
efficiency [5,11]. Traditional CEs are made of glass-based substrates coated with indium–
tin oxide (ITO) or fluorine-doped tin oxide (FTO) [5]. These materials, however, suffer
from brittleness, fragility, heavy weight, poor electrical conductivity, high-manufacturing
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costs, and the need for high-temperature treatment [6,12], thereby limiting the large-scale
deployment of DSSCs. Furthermore, the catalyst materials deposited on these conductive
oxides to constitute the CE are crucial for enhanced performance. One of the most common
catalyst materials in DSSCs is platinum (Pt) due to its remarkable catalytic activity and
high electrical conductivity [13]. However, Pt is prohibitively expensive, rare, and sensitive
to contaminants [7], thereby limiting its widespread use in DSSCs. As such, the pragmatic
deployment of DSSCs relies on the utilization of durable, recyclable, low-cost substrates
with abundant and low-cost catalyst materials.

Recently, the deposition of electrodes on polymer substrates has emerged as a promis-
ing alternative to traditional CEs in DSSCs. This approach offers increased versatility owing
to the lightweight, abundance, low-cost, porous nature, and impact resistance of polymer
substrates [4]. Conventional methods for producing polymer-based CEs primarily involve
vapor deposition, sputter coating, electrochemical deposition, or in situ polymerization [5].
However, despite their potential, these methods face limitations such as the production
of hazardous by-products, need for dedicated vacuum and masking, and difficulty in
achieving custom-designed electrodes [5].

In the present work, we introduce a fully additive manufacturing (AM) approach for
the fabrication of a CE on polymer parts. The proposed approach sequentially involves the
following: (1) rapid prototyping of polymer substrate through 3D printing; (2) cold spray
(CS) surface metallization; and (3) deposition of a thin-layer catalyzer. In detail, firstly,
polylactic acid (PLA) substrate is accurately produced through material extrusion-based
3D printing. Herein, the 3D printing of polymer substrates offers significant advantages,
including rapid prototyping of customized parts, near-net-shape design of intricate com-
ponents, reduced material waste, and on-demand production [14,15]. Next, the substrate
surface undergoes conductive metallization via CS particle deposition, which facilitates the
solid-state direct writing of micron-scale metal particles on the polymer surface as a thin-
film due to its unique features, including low-process temperature, high adhesion strength,
corrosion resistance, and durability [16,17]. In CS deposition, fine metal particles in a size
range of 5–50 µm are supersonically (300–1200 m/s) impacted onto a target surface [11].
Under this high-speed impact, the particles undergo intensive plastic deformation, result-
ing in dense and consolidated functional surface deposition on the target substrate. As
such, CS is a solid-state deposition process that offers remarkable advantages for functional
metallization on polymeric substrates with minimal disruptive effects of oxidation, thermal
residual stress, and phase transformation. Lastly, to create an active catalytic film, a thin
layer of graphite is deposited on the as-CS layer with a graphite pencil.

The key and novel contribution of this paper lies in (i) integrating the emerging CS
deposition technique into the field of DSSC; and (ii) establishing a fully AM approach that
facilitates rapid and sustainable production of polymer-based CEs for DSSCs without the
need for environmentally hazardous and cost-intensive processes such as chemical etching,
precursor, vacuum, plasma, and vaporization steps.

2. Materials and Methods
2.1. Methodology

Figure 1b illustrates the proposed AM approach for CEs in DSSCs. It begins with the
printing of the polymer substrate using a rapid prototyping technique that relies on material
extrusion. The fabrication process involves a typical 3D printer (Sindoh 3DWOX, USA)
equipped with a single-nozzle configuration. Polylactic acid (PLA) filament was used as
the substrate material due to its recyclability, composability, and low cost [18]. Printing was
conducted on a heated bed with a temperature of 90 ◦C, while the extruder temperature and
thickness of each layer were set at 200 ◦C and 0.2 mm, respectively. Throughout the printing
process, the extruder temperature was maintained below the decomposition temperature
of the PLA filaments, which is 250 ◦C [19]. Under these 3D printing configurations, the
PLA substrates with dimensions of 25 mm length, 20 mm width, and 3 mm thickness were
fabricated. That said, 3D printing of the substrate holds great potential for producing
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polymer CEs for DSSCs, owing to the critical advantages of 3D printing, including design
flexibility, rapid prototyping, reduced material waste, ease of iteration and customization,
and cost-effectiveness [14].

Next, the surface of the 3D-printed PLA part is metallized by using CS particle
deposition technology. In the present study, the feedstock Tin (Sn) particles with a size
range of 10–45 µm [20] were cold deposited on the 3D printed PLA surface through a CS
system (Rus Sonic Inc., Model K205/407R, Russia), in which the deposition nozzle was
mounted on a programmable robot arm (Kuka KR Agilus). The CS experimental setup is
shown in Figure 2a, and further details regarding the experimental setup can be found in
the authors’ previous works [21–23]. Air was used as the compressed propellant gas at a
gauge pressure of 0.7 MPa. The gas flow was preheated through the heating coil of the
deposition head, and the temperature of the gas was measured to be nearly 85 ◦C from
the nozzle tip at steady-state conditions by an infrared thermal camera (FLIR A300, New
York, NY, USA) (see Figure 2b). The nozzle transverse speed and spray distance were set to
100 mm/s and 10 mm, respectively, by using the robot arm. The CS process settings led to
the achievement of well-consolidated and electrically conductive Sn film on the 3D printed
PLA parts with a single spray pass.
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Figure 2. (a) Cold spray experimental setup; (b) thermal camera image of the nozzle.

Subsequently, a thin layer of catalyzer graphite film was over-deposited on the as-CS
surface using a graphite pencil (4B), which is often used for low-cost DSSC applications
due to its low-cost and good catalytic activity [24]. As such, the proposed manufacturing
approach enables the complete AM of CEs by employing sustainable manufacturing prac-
tices, offering a green manufacturing solution for DSSCs. The operational settings of each
process step are listed in Table 1.

Lastly, the fabricated CEs were sandwiched with the photoanode to construct the
DSSCs for performance evaluation. The performance of the DSSCs with the additively
manufactured CEs (AM-CE) was compared against the control DSSCs, which employ
the traditional FTO/glass-based CEs. Details regarding the fabrication of the DSSCs are
presented in Section 3.3.
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Table 1. Operational settings of each process step.

Parameter Setting

(1) 3D printing

Filament diameter (mm) 1.75
Nozzle diameter (mm) 0.4
Bed temperature (◦C) 60
Extruder temperature (◦C) 200
Infill density (%) 80
Layer height (mm) 0.2
Print speed (mm/s) 40
First-layer speed (mm/s) 10

(2) Cold spray metallization

Gas type Air
Gas pressure (MPa) 0.7
Powder feed rate (g/s) 0.2
Nozzle speed (mm/s) 100
Spray distance (mm) 10
Number of passes 1

(3) Graphite deposition A thin film of graphite was over-deposited by a 4B graphite pencil.

2.2. Characterization Methods

The microstructure of the fabricated electrodes was analyzed by scanning electron
microscopy (SEM) (Hitachi S-4800, Japan) equipped with an X-ray (EDX) detector. The av-
erage surface roughness (Ra) of the electrodes was measured by a surface roughness tester
(AMTAST, USA). The electrical resistance was measured by a digital multimeter (Agi-
lent/HP 34401A, Melbourne, FL, USA). Ultraviolet-visible spectroscopy (UV-Vis) of the
dye (Eosin Y) was characterized by a UV-Vis spectrophotometer (Cary 60). The cyclic
voltammeter (CV) tests were conducted by using a potentiostat (SP-200, Bio-Logic Inc.,
USA) Lastly, the photo-conversion efficiency of the fabricated DSSCs was measured by
using a solar simulator (Enlitech SS-F5-3A, USA) with a Keithley 2450 source meter.

3. Results and Discussions
3.1. Microstructure Analysis

Figure 3a,b shows the surface and cross-section SEM images of the as-CS PLA poly-
mer, respectively. As seen in Figure 3a, the Sn surface was successfully deposited on the
polymer surface, resulting in a well-consolidated metal (Sn) film with insignificant porosity.
Even though cracks were locally observed on the surface, the fabricated surface maintained
its high electrical conductivity, indicating continuous junction among the Sn particles. To ob-
tain consistent electrically conductive CS coating on polymers, the metallurgical bonding
of the metal microparticles with low porosity and continuous junction is critical [25].

The cross-section morphology in Figure 3b also confirms the metallurgical bonding
of the particles into the polymer target. Moreover, the particles were able to impinge into
the PLA interface, resulting in a film deposition with a thickness of ≈160 µm. Overall, a
dense and consolidated Sn layer was achieved on the polymer surface. Moreover, the EDX
analysis in Figure 3c confirms that the Sn surface had a weight ratio of ≈92%. Note that
the existence of platinum (Pt) peaks in the EDX analysis is due to the thin-film pre-sputter
coating employed to prevent charging effects during the SEM and EDX analyses.
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3.2. Electrical Characterization

The electrical conductivity of the additively manufactured counter electrode (AM-
CE) was calculated by using Equation (1), where σ is the electrical conductivity, R is the
resistance, and A is the cross-sectional area of the circuit. The thickness of the electrode
was obtained from the cross-sectional SEM image in Figure 3b. The length, width, and
thickness of the electrodes for conductivity calculation are 25 × 10−3 m, 20 × 10−3 m,
and 160 µm, respectively, where the average resistance is 0.092 ohm. Taken together, the
electrical conductivity of the polymer electrodes was calculated to be 8.5 × 104 S/m, which
is two orders less than the bulk conductivity of Sn (9.17 × 106 S/m), thereby indicating
promising electrical conductivity for DSSC applications.

σ =
L

RA
(1)

For demonstration purposes, a red LED light was connected to the fabricated CE.
As seen in Figure 4a,b, the LED light displayed clear illumination on the CE, confirming
the electrical conductivity of the fabricated metal film on the 3D-printed polymers. This
successful demonstration underscores the feasibility of CS metallization on 3D-printed
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polymer parts. Additionally, the resulting surface possessed intrinsic surface roughness
(6.317 ± 0.87), which is a highly desirable feature in DSSCs. Enhanced surface roughness
promotes increased active surface area, facilitating improved charge transfer within the
solar cell. Thus, the integration of CS deposition not only ensures electrical conductivity
but also enhances surface characteristics, which are crucial for efficient energy conversion.
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Figure 4. Representative image of the (a) as-CS Sn electrode; (b) fabricated CE.

Cyclic voltammetry (CV) tests were also conducted to investigate the electrochemical
stability of the as-CS Sn electrode. In these tests, a three-electrode configuration was
employed, consisting of the following: (1) the reference electrode (silver/silver chloride
(Ag/AgCl)); (2) platinum (Pt) electrode; and (3) as-cold-sprayed Sn (i.e., as-CS Sn) as the
working electrode. All the electrodes were cleaned with deionized water prior to the CV
tests. The electrolyte was composed of an acetonitrile solution containing 10 mM lithium
iodide (LiI), 1 mM iodine (I2), and 0.1 M lithium perchlorate (LiClO4) [26]. A representative
image of the CV setup is shown in Figure 5a.
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Figure 5b presents the CV curves of the fabricated as-CS Sn electrode on the 3D-printed
PLA part. The voltammetry cycle was set from 0 V to −1.5 V, and the scanning rate was
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50 mV/s. As seen in Figure 5b, the Sn electrode exhibits distinct reduction/oxidation curves
in each cycle, indicating catalytic activity. Moreover, the current density response of the
electrode was maintained without a significant change, showing promising electrochemical
stability. As such, the CV tests reveals that the as-CS Sn electrode holds catalytic activity
and electrochemical stability, thereby showing the potential to constitute a CE after further
applying a thin layer of catalyzer such as graphite film. In that manner, the fully additively
manufactured CEs in this study can be a potential candidate for high-performance, stable,
low-cost, and green CEs in DSSC technology.

3.3. Fabrication of the DSSCs

The DSSCs with the AM-CE and FTO/glass (control) were fabricated. Note that a
thin layer of graphite deposition was applied to both substrate materials (as-CS PLA and
FTO/glass) enclosing the cell region to create CEs for the performance comparison of
fabricated DSSCs. Both CEs had identical dimensions: length = 25 mm, width = 20 mm,
and thickness = 3 mm.

3.3.1. Photoanode

The photoanode of the DSSCs should involve transparent materials to absorb the
incident light through the dye-sensitized semiconductor film to the CE. In this regard,
FTO/glass was chosen as the photoanode material for all the DSSCs in this study. To prepare
the photoanode, titanium dioxide (TiO2) paste (Aqua Solutions Inc., USA) was applied
to the FTO surface by using the conventional doctor blade method. During this process,
the thickness of the film was controlled by using 3M Scotch tape, and the thickness of the
coated TiO2 film was approximately 7 µm. The TiO2 film was then dried in atmospheric
conditions for 15 min. Next, the coated TiO2 film was annealed at 450 ◦C for 30 min. At
this point, the thin film of mesa-porous TiO2 semiconductor film had been achieved on the
FTO/glass (see Figure 6 (left panel)). Lastly, the prepared semiconductor TiO2 film was
soaked in 0.3 mM Eosin-Y dye solution for 24 h in the dark condition and then rinsed with
ethanol to remove dye impurities (see Figure 6 (middle panel)). The UV-Vis spectra results
in Figure 7 show that the absorption peak of the prepared Eosin-Y dye appeared around
525–530 nm, which matches with previous records [27,28]. As such, the prepared dye can
absorb incident light in the visible region.
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3.3.2. Electrolyte

A quasi-solid gel electrolyte was used in the fabrication of the DSSCs due to its
intrinsic advantages, including improved stability, longevity, and reduced corrosion and
leakage [29]. In this regard, a quasi-solid polymer gel electrolyte was synthesized by
following a published recipe [30] to prevent any possible electrolyte leak through the porous
3D-printed substrates. Figure 8 shows the representative images of the gel electrolyte.
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3.3.3. DSSC Assembly

The prepared dye-sensitized photoanode and the fabricated CE were sandwiched
together by injecting the synthesized gel electrolyte between the photoanode and the
CE (see Figure 6 (right panel)). A thin parafilm (i.e., 130 µm thickness) was used as a
spacer between the photoanode and the CE. Slight pressure was applied in the sealing
step to help with the penetration of the gel electrolyte into the dye-sensitized semicon-
ductor layer, enabling homogenous wetting of the active cell area. The fabricated DSSCs
with the polymer CE and traditional FTO/glass-based CE (control DSSC) are shown in
Figures 9a and 9b, respectively.
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3.4. Performance Evaluation of the DSSCs

The active cell area of the cell was set to 0.16 cm2 using a rigid black mask. Current
density–voltage (J-V) characterization was carried out under standard illumination con-
ditions with an air mass of 1.5 solar spectra at 100 mW/cm2 using a solar simulator [31].
The photoelectric performance criteria of fill factor (FF) and power conversion efficiency
(PCE), also known as cell efficiency (η), for the fabricated DSSCs were calculated by using
Equations (2) and (3) [32], where VOC is the open-circuit voltage (V), JSC is the short-circuit
current density (mA/cm2), Pin is the incident light power density (mW/cm2), and Pmax is
the maximum power density (mW/cm2) of the cell, respectively.

Note that the efficiency of DSSCs strictly depends on the material selection, including
the types of semiconductor film, electrolyte, dye molecules, and catalytic film on the CE.
The efficiency of DSSCs that use natural dyes such as Eosin-Y is generally lower (e.g.,
from η = 0.03% [33] to η = 1.518% [34]) than that of metal-based dyes such as N3-dye
(η = 10% [35]) and N719 (η = 11.2% [35]). Moreover, solid-electrolyte gels often lead to
lower photo-conversion efficiency as compared to liquid electrodes [36].

For the present study, it is noteworthy that the main objective was not to maximize
the efficiency of DSSCs, but rather to conduct a comparative analysis of the performance
between the additively manufactured CE and the conventional glass-based CE used in
DSSCs, such as graphite-coated FTO/glass. In this regard, the fabricated DSSCs depicted
in Figure 9a,b enabled a comprehensive performance comparison between the AM-CE and
conventional glass-based CE (FTO/glass) and were fabricated to achieve this.

FF =
Pmax

VOC × JSC
(2)

PCE =
Pout

Pin
=

Pmax [mWcm−2]

100
=

VOC × JSC × FF
Pin

(3)
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Figure 9c,d show the J-V characterization results for the DSSCs with AM-CE and
FTO/glass, respectively. As seen in Figure 9c,d, the DSSCs with the AM-CE exhibited
significantly better efficiency than that of their conventional counterparts with FTO/glass.
Table 2 summarizes the J-V results for the DSSCs assembled with different CEs. The results
highlight that the DSSCs with the AM-CE can achieve approximately 2.5-times-higher
photo-conversion efficiency than the DSSCs with FTO/glass-based CE. Furthermore, the
results indicate that the AM-CE enhances catalytic activity, as evidenced by its higher
(about 19%) short-circuit current density. It is noteworthy that a low magnitude of Jsc was
obtained for both CE types, indicating that further optimization of the dye loading, CE
materials, electrode/electrolyte interface, and/or fabrication processes may be necessary to
enhance the overall efficiency of the solar cells. Therefore, future works may be directed to
further characterize the current density by using external quantum efficiency (EQE) tests,
across a comprehensive set of wavelengths, and electrochemical impedance spectroscopy
(EIS) tests.

Table 2. Summary of J-V characterization.

DSSC with Jsc (mA/cm2) Voc (V) FF (%) Efficiency (%)

AM-CE * 1.9 0.51 47.8 0.45
FTO/glass 1.6 0.42 26.7 0.18

* indicates this study.

The enhanced performance of the DSSCs with the AM-CE can be attributed to the
higher electrical conductivity and the micro-rough surface morphology of the AM-CE
compared to the traditional counterpart of FTO/glass. Table 3 provides a comparison of
the electrical resistance and average surface roughness (Ra) for both electrodes. As seen in
Table 3, the polymer CE offers significantly higher electrical conductivity (lower resistance)
and surface roughness than the FTO/glass. This characteristic results in a larger surface
area with enhanced electrical conductivity, ensuring a stable charge-carrying capability
for the regeneration of dye and consequently leading to improved energy harvesting
performance. These proof-of-concept findings suggest that the AM-CE holds potential as
a high-performance, cost-effective, facile, and environmentally friendly alternative to the
traditional FTO/glass-based CE used in DSSC technology.

Table 3. Comparison of the counter electrodes.

Material Electrical Resistance (ohm) Average Surface Roughness (Ra) (µm)

AM-CE * 0.092 ± 0.005 6.317 ± 0.87
FTO/glass 36.9 ± 0.535 0.172 ± 0.07

* indicates this study.

It is noteworthy that we observed hysteresis in the fabricated DSSCs, as evidenced
by the minor fluctuations along the curves in Figure 9c,d. Hysteresis is a common issue
in DSSCs [37], and it is likely attributed to reduced photon absorption, increased charge
recombination, and thermal effects [38]. Hysteresis can affect the overall performance of
DSSCs by altering their PCE and current J-V characteristics. Addressing hysteresis in DSSCs
is essential not only for optimizing device performance but also for ensuring long-term
stability and reliability. As such, future work may be directed towards uncovering the exact
reasons behind these hysteresis occurrences, as well as to performing stability tests on the
solar cells over time.

4. Conclusions

A complete AM approach was introduced for fabricating CEs in DSCSS, which sequen-
tially comprises: (1) 3D printing polymer substrates; (2) CS metallization; and (3) pencil
graphite deposition. Polymer PLA substrates were printed through material extrusion. Subse-
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quently, the micron-scale Sn particles were then deposited on the as-printed polymer surface
by CS at ambient conditions. Lastly, a thin-layer graphite catalyzer was applied to the as-CS
surface using a graphite pencil to constitute a fully additively manufactured counter electrode
(AM-CE). The following conclusions can be drawn from the present study:

• Unlike traditional CE manufacturing methods, the proposed AM approach eliminates
the need for environmentally hazardous and cost-intensive surface pre-treatment
processes. This makes it a facile and green approach for CE manufacturing in DSSC
technology.

• The resulting AM-CEs exhibited promising electrical conductivity (8.5 × 104 S/m),
surface roughness (Ra ≈ 6.32 µm), and electrochemical stability.

• Photo-conversion tests confirmed the enhanced performance of AM-CE, exhibiting a
≈2.5-fold increase over the conventional FTO\glass-based CE material in DSSCs.

• The proof-of-concept results underscore the potential of the established complete AM
approach for sustainable, large-scale, and low-cost production of the AM-CEs, thereby
exhibiting the potential for pragmatic deployment of the DSSC technology.
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Nomenclature

Symbol Description
A Area
FF Fill factor
J Current density
Jmax Maximum short-circuit current density
Jsc Short-circuit current density
L Length
Pin Incident light power density
Ra Average roughness
R Resistance
S Siemens
t Film thickness
V Voltage
Vmax Maximum open-circuit voltage
Voc Open-circuit voltage
ρ Resistivity
Ω Ohm
η Energy harvesting efficiency
Abbreviations Description
AM Additive manufacturing
AM-CE Additivelt manfuacted counter electrode
CE Counter electrode
CS Cold spray
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CV Cyclic voltammetry
DSSC Dye-sensitized solar cell
EDX Energy-dispersive X-ray
EQE External quantum efficiency
FTO Fluorine-doped tin oxide
ITO Indium tin oxide
PCE Power conversion efficiency
PET Polyethylene terephthalate
Pd Palladium
PLA Polylactic acid
SEM Scanning electron microscopy
Sn Tin
UV-Vis Ultraviolet-visible spectroscopy
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