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Abstract

Cold spray (CS) particle deposition, also known as cold spray additive manufacturing, has garnered great attention as an advanced additive
manufacturing (AM) and surface deposition technology, facilitating rapid and scalable production of functional parts and surfaces in a solid-state
manner. In CS, consistent and precise feeding of functional feedstock powders is crucial for achieving effective particle deposition. However,
vibratory-based powder feeders often face challenges associated with powder delivery and powder segregation. This underscores the critical
need for a precise diagnostic framework to effectively control powder flow during cold spraying. To this end, the present study proposes a
powder flow monitoring framework for the CS process using a stethoscope sound-guided interpretable deep learning (IDL) model. Internal sound
data from the vibrated powder feeder is collected through a stethoscope sensor to train a two-stage model. In the first stage, a convolutional
autoencoder (CAE) is trained to build an unsupervised learning-based anomaly detector, which identifies classification thresholds based on the
receiver operation characteristic curve. In the second stage, a convolutional neural network (CNN) model is trained as the powder flow diagnostic
tool by considering process anomalies, namely i) no powder flow; ii) feeder clogging; and iii) no gas flow. The results reveal that the stethoscope
sound-guided model achieves a classification accuracy of 95% on the test set, significantly outperforming benchmark utilizing typical external-
sound recording microphones in diagnosing CS powder flow. Furthermore, the model is visualized and interpreted by employing t-distribution
stochastic neighbor embedding and integrated gradients techniques to enhance reliability of CS powder flow diagnosis. This research highlights
the effectiveness of the stethoscope sound-guided IDL model for in-situ powder flow monitoring and process diagnosis in the domain of cold
spray additive manufacturing, contributing to effective particle deposition.
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1. Introduction

Cold spray (CS) particle deposition is an emerging solid-
state additive manufacturing technique that facilitates the high-
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throughput production of functional parts and surfaces. In CS
process, micron-scale particles (i.e., typically metal particles in
size from 5 to 50 µm) are fed into a converging-diverging noz-
zle through a powder feeder, where they undergo acceleration to
supersonic velocities (>300 m/s) using compressed gases (e.g.,
air, nitrogen, helium) ([1]-[3]). Upon the impact of these parti-
cles onto a target substrate, material consolidation takes place,
leading to the formation of a dense metal coating on the surface,
all achieved in a solid-state manner [1]. Notably, owing to its
unique features (vis., high deposition rate, minimal thermal in-
put, corrosion resistance, material versatility), CS has garnered
great attention in the application domains of additive manufac-2213-8463© 2024 The Authors. Published by ELSEVIER Ltd.
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Figure 1. Schematic illustrations of CS powder flow monitoring framework: (a) LPCS system and its potential powder flow anomalies; (b) Sound sensing-based
powder flow process monitoring framework.

turing, aerospace, electronics, defense, and energy industries
([4]-[7]).

There are mainly two types of CS systems, namely high-
pressure cold spray (HPCS) and low-pressure cold spray
(LPCS). The main difference between these setups arises from
their operational pressure range (10-50 bar for HPCS and 6-10
bar for LPCS ([8]-[9]])) and the location of the powder feed. In
HPCS, the powders are fed through the upper stream of the gas
flow (i.e., convergent section) using a dedicated high-pressure
powder feeder, while LPCS involves downstream powder inser-
tion achieved through the negative pressure (suction) created by
the nozzle flow. Owing to its downstream powder injection, the
LPCS eliminates the need for complex powder feeders, which

offers a compact design, portability, application flexibility, and
cost-effectiveness. These features collectively position LPCS as
a suitable manufacturing approach for various practical applica-
tions, encompassing polymer metallization, antibacterial coat-
ing, on-the-site sustainable repairing, etc. ([10]-[13]).

Despite these advantages, LPCS often faces challenges asso-
ciated with powder delivery and powder segregation due to the
limitations of vibratory-based powder feeders widely used in
LPCS setups. These shortcomings arise from inconsistent pow-
der flow rate, sensitivity to powder characteristics, limited pre-
cision, and limited adaptability ([14]-[15]). Achieving consis-
tent and precise feeding of functional powders is imperative for
effective CS deposition. As such, these challenges underscore
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the vital need for a precise process control and diagnostic mech-
anism to effectively manage and diagnose powder flow during
CS in a non-invasive manner.

To this end, we introduce an interpretable deep learning
(IDL) framework for powder flow monitoring for the CS pro-
cess. In detail, a stethoscope sensor ([16]-[19]) is deployed
to gather the internal sound data from the powder feeder for
model training. Unlike traditional external microphones, the
stethoscope sensor facilitates high-fidelity sound signal collec-
tion from the vibration of the feeder, while effectively surpass-
ing ambient harmonic sound from high-frequency bands and
noise from the working environments. Following the stetho-
scope sensor-based data collection, a convolutional autoen-
coder (CAE) is trained to build an unsupervised learning-based
anomaly detector, identifying classification thresholds. A con-
volutional neural network (CNN) model is then trained as the
powder flow diagnostic tool by considering three types of pro-
cess abnormalities. The performance of the proposed two-stage
model, especially the robustness for ambient noise, is compared
with the model trained on the external microphone sound data
to underscore the effectiveness of the statoscope sound-guided
IDL approach. Finally, the model’s decision-making is visual-
ized and interpreted based on the IDL techniques to enhance the
reliability of diagnostic results. The novelty of this work lies in
the development of a stethoscope sound-guided IDL-based pro-
cess control framework for powder flow monitoring and diag-
nosis, which ultimately contributes to effective and precise CS
particle deposition.

2. Data Preparation

In a typical LPCS, as shown in Fig. 1(a), powders are fed
into the supersonic nozzle (i.e., converging-diverging nozzle)
through a vibrating-powder feeder. In detail, a vibration valve
inside the hopper (reservoir) vibrates and applies a mechanical
force to the powders, allowing the adjustment of the powder-
flow rate. As the gas flows and rapidly expands through the
nozzle, a significant pressure drop occurs in the divergent sec-
tion. This phenomenon creates a negative pressure (suction) at
downstream of the divergent section, facilitating the feeding of
the powders into the nozzle for the spraying process. During
this powder-feeding process, the vibration valve generates dis-
tinct sound signals to adjust the powder feed rate, which could
be potentially used as a sensing metric for powder flow in the
CS process. As such, we hypothesize that these sound signals
can be collected and utilized to establish correlations between
process (powder flow) stability and potential process anoma-
lies. Furthermore, the gathered data can be utilized to train a
deep learning model for in-situ powder flow monitoring and the
detection and diagnosis of process anomalies.

In this regard, we considered three potential powder flow
cases (anomalies) in the CS process, namely 1) no powder flow;
2) feeder clogging; and 3) no gas flow (see Fig. 1(a), below
panel). To elaborate, the first case (no powder flow) can occur
when the vibration valve is operational with compressed gas
flow but there is no powder inside the hopper. High-fidelity de-

tection of this case is particularly important to precisely termi-
nate the spraying process to safeguard the CS equipment from
potential damage. The second case (feeder clogging) arises
when the feeder is filled with high-density powders above a
threshold limit, restricting the vibration of the valve. In this
scenario, the hopper was filled up to the top of the vibration
valve at the beginning of the process, ensuring that the powder
weight (inertia) is sufficient to clog the feeder. This overload-
ing creates significant inertia on the vibration valve, impeding
the powder feeding to the nozzle, thereby resulting in a dis-
tinct sound signal from the valve. This condition can eventu-
ally lead to the malfunction of the vibration valve due to exces-
sive load. While this risk can be mitigated by filling the feeder
with a certain amount of powder before spraying, detecting the
over-loading remains valuable to prevent potential mechanical
and electrical failures by detecting the compulsion of the valve.
Lastly, irregularities in the driving gas flow can influence pow-
der flow characteristics. Specifically, in the absence of gas flow,
the valve may persist in vibrating, thereby causing the powders
within the powder hopper to be pushed by gravitational effects.
However, without the driving gas flow, there will be no suction
to initiate the spraying process for powders. Consequently, this
situation can eventually lead to agglomeration and segregation
of the powders inside the tube, causing them to adhere to the
tubing walls due to the cohesive forces (e.g., Van der Waals
forces) [21]. Taken together, it is crucial to detect these anoma-
lies during the CS in an unintrusive manner with high-fidelity
precision.

To achieve this, in Section 2.1, we collect the vital sound data
arised from the vibration valve through a stethoscope sensor
(MDF Instruments USA LLC, Model MDF747-BO) attached
to the cap of the powder feeder of the LPCS (BaltiCold Spray
LTD, Model CSM 108.2). In these data collection experiments,
quasi-spherical shaped tin (Sn) powders with a size range of 10-
45 µm (see the SEM image in Fig. 1(a)). was sprayed using a
constant gas (gauge) pressure of 0.7 MPa at room temperature
without pre-heating the driving gas. The mean particle diam-
eter (d50) of the Sn powders is around 17 µm. In Section 2.2,
the collected sound data is utilized to establish correlations for
the aforementioned anomalies, with the ultimate goal of feature
extraction for modeling purposes.

2.1. Sound data collection

Two types of sound sensors: (i) a typical external micro-
phone; and (ii) an internal stethoscope, were installed on the
powder feeder of the CS system as shown in Fig. 1(b). In the
first case (external microphone), a USB microphone (Fifine Mi-
crophone, Model K053) serves as a typical type of sound sen-
sor, capturing the auditory perceptive region with a frequency
range spanning from 20Hz to 20kHz. This microphone converts
diaphragm vibration in response to sound waves into electrical
signals, which provides digital information on the acoustic en-
vironment. Meanwhile, the stethoscope sensor is specialized in
detecting the internal sounds of machines through subtle vibra-
tions on the attached surface and is characterized by its resis-
tance to ambient environmental noise. This is particularly valu-
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Figure 2. Sound signals by different sensor types and sound sources. (a-c) Raw sound signals for (a) powder flow, (b) environmental noise, and (c) a combination of
both. (d-f) Frequency spectrums from the stethoscope sensor for (d) powder flow, (e) environmental noise, and (f) both combined. (g-i) Frequency spectrums from
the microphone sensor for (g) powder flow, (h) environmental noise, and (i) both combined.

able for capturing sound signals in extremely noisy environ-
ments (> 80 dB), such as cold spraying. This sensor is designed
to convert analog sound signals captured by a stethoscope head
into digital data through a USB microphone (the same model
as the first sensor) connected via a rubber hose. To minimize
interference from external noise and concentrate on the internal
sound for powder flow, the stethoscope sensor was deployed
on the top surface of the powder feeder and secured with tape.
Both sensors were linked to a single edge device (Raspberry
Pi 4B), equipped with a data acquisition program developed in
Python, to collect the synchronized sound data from both sen-
sors. The sampling frequency was set to 48kHz, in line with
the Nyquist–Shannon sampling theorem [22], to encompass the
maximum audible frequency range, ≈ 24kHz.

To verify the sensors’ ability to capture powder flow sounds
amidst environmental noise from surrounding machinery, such
as dust collectors and compressed air, sound data were initially
collected under three distinct scenarios: (i) when only the pow-
der feeder is operational (no external sound source), (ii) when
only environmental noise sources (i.e., downdraft table) are ac-
tive, and (iii) when both powder feeder and environmental noise
sources are simultaneously active. Given that particles primar-
ily collide on-the-fly rather than inside the powder hopper, col-
lecting the sound signal from the vibrating valve of the hopper
can be utilized to monitor the aforementioned anomalies. Ad-
ditionally, environmental noise refers to the noise generated by
the downdraft table (≈ 80 dB). According to the OSHA stan-
dards, CS equipment should be equipped with a dust collector

or downdraft table to safely handle over-sprayed micron-scale
metal particles ([23]-[24]).

Fig. 2(a-c) displays a 30-second length frame of raw sound
wave signals recorded by stethoscope and microphone sensors
under the above-mentioned three conditions. The microphone
sensor recorded the environmental noise as more prominent
compared to the isolated powder flow sound, which is consis-
tent with human auditory perception. Remarkably, the stetho-
scope sensor captured the internal sound of powder flow, even
over ambient noise. This distinction is further elucidated in
the frequency spectrums (see Fig. 2(d-i)) derived via the Fast
Fourier Transform (FFT). The spectra for both sensors dur-
ing powder flow in Fig. 2(d, g)) reveal a prominent charac-
teristic frequency peak at around 90Hz, which corresponds to
the vibration frequency of the vibratory valve adjusted accord-
ing to the power level of the powder feeder. The environmen-
tal noise spectra in Fig. 2(e, h) show characteristic peaks at
around 270Hz, with fluctuating frequency bands below 120Hz
and above 300Hz. Notably, the stethoscope’s spectrum during
the recording of both powder flow and environmental noise is
significantly composed of powder flow frequencies (see Fig.
2(f)). On the other hand, the microphone’s spectrum is more
significantly affected by environmental noise (Fig. 2(i)). As
such, the sound spectra results indicate that the stethoscope sen-
sor provides more distinctive and permeable sound information
and patterns for monitoring the powder flow state, even in the
inherent noisy environment of CS process.
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Figure 3. Log-Mel spectra extracted from 1-second frame of (a) stethoscope
sound and (b) microphone sound

Subsequently, four sets of sound data were collected under
varying powder flow conditions. The first dataset was obtained
by recording the sound of normal powder flow state sprayed
on the substrate (i.e., aluminum plate), which is not physically
connected to the CS setup. The remaining datasets were col-
lected during three different abnormal states: (i) no powder
flow, where the powder feeder was empty, (ii) feeder clogging,
characterized by a jammed feeder hole and a stuck shaking tip,
and (iii) no gas flow, preventing the powder from being sprayed
due to the absence of gas supply (see Fig. 1(a)). Each dataset
comprises 30-second length of sound signals recorded by both
stethoscope and microphone sensors to train the powder flow
state diagnostic models.

2.2. Sound feature extraction

Feature extraction is an essential step for effective training of
deep learning models, especially when working with a limited
dataset. In this study, we have selected the Log-Mel spectrum
as the feature for our sound data to train the diagnostic models.
The Log-Mel spectrum is a powerful representation that cap-
tures the essence of sound signals in a format suitable for hu-
man auditory sensitivity. This is because the Mel-scale empha-
sizes finer details at lower frequencies, where the human ear is
more sensitive, and wider bands at higher frequencies. Recent
studies have presented the effectiveness of Log-Mel spectrum
as features in training deep learning models for sound recogni-

tion ([25]-[26]). This characteristic also aligns well with sound
monitoring applications, considering that the source frequen-
cies produced by mechanical systems are relatively low com-
pared to the high sampling frequency of sound sensors, such as
48 kHz in our case.

To extract the Log-Mel spectrum from the powder flow
sound data, we first segmented each 30-second sound dataset
into 1-second frames, shifting the start of each window by
0.1 seconds to create overlapping frames. Each sound frame
was then converted into a spectrum via the Short-Time Fourier
Transform (STFT) with a Hamming window. Subsequently, 40
Mel filter banks were applied to the STFT spectra to extract the
Mel spectrum, focusing on a frequency range from 20 Hz to
4000 Hz, which is a suitable range for capturing relevant sound
characteristics. The relationship between Mel and frequency (f)
is expressed in Eq. (1):

Mel( f ) = 2595log10(1 +
f

700
) (1)

Each output of the filter bank was then converted to the deci-
bel scale to obtain the Log-Mel spectrum, followed by a nor-
malization process between 0 and 1. This normalization is cru-
cial as it ensures that the model is not biased by variations in
absolute signal amplitude. Fig. 3 shows examples of Log-Mel
spectrums from stethoscope and microphone sound frames in
normal powder flow states. The spectrum from the stethoscope
sound emphasizes the low-frequency areas corresponding to the
powder feeder vibration, while the microphone sound spectrum
shows higher sound intensity across all frequency bands. These
results indicate that the microphone is more susceptible to envi-
ronmental noise from various sources than the stethoscope sen-
sor, underscoring the high-fidelity performance of stethoscope-
based CS monitoring. The resulting Log-Mel spectrum feature
sets serve as the input features for the diagnostic models dis-
cussed in the subsequent chapter.

3. Model Construction

The powder flow diagnostic model in this study was con-
structed using a two-stage deep learning strategy as depicted in
Fig. 4(a). Initially, the unsupervised model acts as an anomaly
detector by learning from a dataset consisting only of normal
conditions. It detects anomalies through the significant devi-
ation in reconstruction error, indicating conditions diverging
from the trained normal state. Following this, a supervised
model, trained on datasets of three abnormalities, classifies the
detected anomaly data into specific abnormal types, thereby
diagnosing the powder flow state in the CS process. This hy-
brid method was chosen considering the practical difficulty of
obtaining a comprehensive dataset that covers every case of
anomalies. Recent studies have presented the effectiveness of
unsupervised models in anomaly detection when sufficient ab-
normal data sampling is limited ([27]-[28]). While unsuper-
vised models for anomaly detection and supervised models
for abnormality classification have individually demonstrated
their utility in existing studies, the strategic integration of these
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Figure 4. CS Powder flow diagnostic framework. (a) Schematic diagram of a two-stage powder flow diagnosis framework. (b) Architecture of a convolutional autoen-
coder (CAE)-based anomaly detector. (c) Architecture of a convolutional neural networks (CNN)-based abnormality classifier. (d) Receiver operating characteristic
(ROC) curves of CAE models. (e) Training history of CNN models.

two models into a coherent framework for process monitoring
presents a novel approach. To clarify the purpose of each stage
in this paper, ‘anomaly’ denotes any variation from the normal
condition, while ‘abnormality’ specifies the particular kind of
abnormal state detected.

3.1. Anomaly detector construction

As depicted in Fig. 4(b), the anomaly detector within the
powder flow diagnostic model was built by convolutional au-
toencoder (CAE). The specific type of architecture was chosen
for its unsupervised learning capability with our sound data.
An autoencoder is a neural network that encodes input data into

a compressed representation and subsequently reconstructs the
output to closely resemble the original input. Convolutional lay-
ers are utilized to better extract spatial features from 2-D input
data—in this case, the Log-Mel spectra of sound signals. The
convolutional layers apply multiple filters, also known as ker-
nels, to the input data to create feature maps that highlight im-
portant patterns within the data, via the process described by
Eq. (2):

Fi j = σ(b + ΣmΣnI(i+m)( j+n) · Kmn) (2)

where Fi j is the feature map value at position (i, j), σ is the acti-
vation function, b is the bias, I is the input, and K is the kernel of
size m × n. Max-pooling layers follow each convolutional layer
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Table 1. Grid search results for stethoscope-CAE (s-CAE) and microphone-
CAE (m-CAE) models.

Hyper-
parameter

Search Level
(Range)

Best Case

s-CAE m-CAE

Dimension of
latent space

10
(30-300) 60 120

Number of
conv. layers

5
(1-5) 2 3

Size of kernels 3
(2-4) (3x3) (3x3)

Learning rate
(Adam opt.)

3
(0.001-0.1) 0.05 0.001

Activation
function

2
(ReLU, Sigmoid) ReLU ReLU

Avg. of MAE 0.2643 0.4219

to downsample the feature map, retaining the prominent fea-
tures. The decoder part of the CAE, in contrast to the encoder,
uses transposed convolutional layers to upsample the feature
maps, and this upsampling operation is denoted by Eq. (3):

F′i j = σ(b′ + ΣmΣnO(i−m)( j−n) · K′mn) (3)

where F′i j is the upsampled position (i, j), O is the output from
the previous layer, and K′ is the transposed convolution kernel.
In short, the CAE model includes an encoder network with con-
volutional layers and a decoder network with transposed convo-
lutional layers. The number of nodes in the latent space, which
is the bottleneck of the CAE, is a critical hyperparameter that
controls the reduced dimensionality of the input data.

In this study, two CAE models were constructed to compare
performance based on the type of sensor used for sound col-
lection: one trained on stethoscope-sound data and the other on
microphone-sound data. For each model, 80% of normal dataset
(24 seconds, resulting in 240 Log-Mel spectra) was used for
training and the remaining 20% reserved for validation. A grid
search was conducted to identify the best CAE model that min-
imizes reconstruction error of the Log-Mel spectra, using mean
absolute error (MAE) between the original and reconstructed
spectra as the evaluation metric. A total of 900 combinations of
hyperparameters were tested for both the stethoscope-CAE (s-
CAE) and microphone-CAE (m-CAE) models. Table 1 outlines
the hyperparameters involved in the grid search and presents the
optimal combination found for each CAE along with the best
models’ average MAE.

To determine the optimal threshold for anomaly detection
based on the reconstruction error from the two above best mod-
els, the receiver operating characteristic (ROC) curve was em-
ployed. This curve plots the true positive rate (correctly pre-
dicting an actual anomaly) against the false positive rate (in-
correctly predicting normal as an anomaly) at various thresh-
old settings, offering a method to assess the balance between

Table 2. Grid search results for stethoscope-CNN (s-CNN) and microphone-
CNN (m-CNN) models.

Hyper
parameter

Search Level
(Range)

Best Case

s-CNN m-CNN

Number of
conv. layers

5
(1-5) 3 4

Number of
dense layers

5
(1-5) 3 3

Size of kernels 3
(2-4) (3x3) (3x3)

Learning rate
(Adam opt.)

3
(0.001-0.1) 0.001 0.001

Activation
function

2
(ReLU, Sigmoid) ReLU ReLU

Final validation accuracy 99.7% 80.0%

sensitivity and specificity. The ROC curve for each s-CAE and
m-CAE model is shown in Fig. 4(d). The ROC analysis deter-
mined an optimal threshold for anomaly detection at 0.2619 for
the s-CAE and 0.5834 for the m-CAE, with the lower threshold
of the s-CAE reflecting its superior ability to reconstruct normal
data as demonstrated in Table 1. Additionally, when validating
anomaly detection across both normal and abnormal datasets,
including the data used for training, the s-CAE model achieved
a slightly higher accuracy of 96.7% compared to the m-CAE
model at 90.8%.

3.2. Abnormality classifier construction

In the next phase of our diagnostic model, a convolutional
neural network (CNN), a popular deep learning architecture,
was employed as the abnormality classifier, as depicted in Fig.
4(c). Unlike the CAE used for anomaly detection, the CNN in
this stage is designed to categorize specific abnormal conditions
within the powder flow process. The architecture of the CNN
incorporates batch normalization after each convolutional layer
to accelerate training and improve performance by stabilizing
learning. Additionally, dropout layers are strategically placed
in the dense layers to prevent overfitting by randomly omitting
subset of features during training. These elements are critical
for enhancing the model’s generalization capability, ensuring
robust classification under various operational conditions.

Similar to the CAE model, grid search was conducted to
find the optimal hyperparameter combinations for the best CNN
models, the stethoscope-CNN (s-CNN) and microphone-CNN
(m-CNN). For training, 80% of the data frames were randomly
selected from each of the three types of abnormal datasets, and
the remaining 20% were used as validation data to measure the
tri-classification accuracy across 450 hyperparameter combina-
tions. Table 2 displays the grid search results for the s-CNN and
m-CNN models, along with the validation accuracy for each
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Figure 5. CS Powder flow diagnostic results and data visualization. (a) Anomaly detection robustness evaluation results. (b-c) Confusion matrices of abnormality
classification by (b) stethoscope-CNN and (c) microphone-CNN. (d-e) Data visualization for (d) stethoscope sound and (d) microphone sound.

best model. Notably, just as the best m-CAE model from Ta-
ble 1 required a relatively deeper network, the best m-CNN
model also demanded more complexity compared to the s-CNN
model. This could be interpreted as needing more trainable
parameters to discern meaningful patterns from microphone-
captured powder flow sounds masked by environmental noise,
as observed in Figs. 2 and 3. Consequently, as seen in Fig.
4(e), there was a clear tendency for overfitting, with a signif-
icant drop in performance on validation data compared to the
training data during the learning process.

4. Result and Discussion

4.1. Model robustness evaluation

As mentioned in the introduction, the robustness of models
built on sound data—sensitive to noise—is a crucial factor de-
termining the performance of process monitoring. Therefore,
in this study, a separate dataset was collected to evaluate the
robustness of powder flow diagnostic performance. The normal
test data were sampled for one minute while 75 g of tin powder
were sprayed without any issues. Similarly, data under abnor-
mal conditions were also collected for one minute each. The
datasets were segmented into 1-second frames and then trans-
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formed into Log-Mel spectra, which served as input features for
our powder flow diagnostic models.

In the first stage, the performance of anomaly detection was
evaluated based on key binary classification metrics, namely
accuracy, precision, recall, and F1-measure, which are derived
from the classification outcomes: (i) True positive (TP) when
the model accurately identifies anomaly data as such; (ii) True
negative (TN) when normal data is correctly identified as nor-
mal; (iii) False positive (FP) when normal data is mistakenly
identified as abnormal; and (iv) False negative (FN) when ab-
normal data is incorrectly labeled as normal. The calculations
for these metrics are as follows:

Accuracy =
T P + T N

T P + T N + FP + FN
(4)

Precision =
T P

T P + FP
(5)

Recall =
T P

T P + FN
(6)

F1 − score = 2 ·
Precision · Recall
Precision + Recall

(7)

Accuracy in Eq. (4) represents overall classification results
and is typically the main performance index. Precision in Eq.
(5) indicates the ratio of actual to predicted anomalies and
is more reliable when normal data significantly outnumbers
anomaly cases, which is not the case here. Recall in Eq. (6)
focuses on accurately classifying abnormal data, crucial in pro-
cess monitoring applications where missing an anomaly state
can be critical. F1-score in Eq. (7) is the harmonic means of
precision and recall, providing a balance between the two.

Fig. 5(a) demonstrates the results of evaluating the anomaly
detection performance of the s-CAE and m-CAE models based
on both training and test data. Notably, the performance of the
m-CAE model on the test data significantly declined compared
to its performance on training data, especially in terms of recall,
a measure of accurately detecting anomalies, which dropped to
34%. This decrease is interpreted as being directly linked to the
characteristics of the microphone sensor sound, which is highly
influenced by environmental noise in the CS system. In con-
trast, the stethoscope sensor-based s-CAE model exhibited high
anomaly detection performance nearly identical to that seen in
training data evaluations, particularly notable in its recall on test
data, which was confirmed to be 100%.

Fig. 5(b-c) presents confusion matrices evaluating the clas-
sification performance of the s-CNN and m-CNN models, re-
spectively, on the test abnormality dataset. Similar to the first
stage, the performance of the microphone sound-based model
(m-CNN) is noticeably inferior, particularly in distinguishing
between conditions of empty powder feeder (no powder flow)
or feeder clogging. To analyze the reasons behind this perfor-
mance disparity, the following sections will visualize the sound
data and interpret the basis of the models’ classifications.

4.2. Model visualization and interpretation

The CAE employed for unsupervised anomaly detection of
our powder flow diagnostic model is also often utilized for ef-

fectively reducing the dimensionality of high-dimensional data.
Particularly, when combined with the t-distributed stochastic
neighbor embedding (t-SNE) technique, it demonstrates ex-
cellent performance in visualizing data in a two- or three-
dimensional space that is perceptible to humans [29]. The t-
SNE is adept at visualizing data by reducing its dimensionality
to two or three dimensions while it maintains the local structure
of data in this lower-dimensional representation. The algorithm
first calculates pairwise similarities in the high-dimensional
space, assigning higher probabilities to closely located points,
based on Eq. (8):

Pi| j =
exp(−||xi − x j||

2/2σ2
i )

Σk,iexp(−||xi − x j||
2/2σ2

i )
(8)

where Pi| j is the conditional probability, representing the sim-
ilarity of data point x j to xi, σi is the Gaussian variance de-
termined by the perplexity setting in the t-SNE algorithm, re-
flecting the effective neighborhood size around data point xi. It
then seeks to replicate this similarity distribution in the reduced
space by minimizing the Kullback-Leibler (KL) divergence be-
tween the distributions in both spaces. This optimization, typ-
ically achieved through gradient descent, ensures that similar
objects are close together and dissimilar ones are far apart in
the reduced space.

In this study, the features output from the latent space, by
inputting the Log-Mel spectra into the CAE, were visualized
on a 2-D plane by reducing their dimensionality using t-SNE.
Fig. 5(d-e) displays the visualized stethoscope and microphone
sound data based on the s-CAE and m-CAE models. Each point
represented on the t-SNE feature plane corresponds to a Log-
Mel spectrum sample from a 1-second sound frame, allowing
for visual recognition of the similarities in sound according to
the state of powder flow. Notably, in Fig. 5(d), distinct clus-
ters can be easily observed for normal powder flow and the
three types of abnormalities in the stethoscope sensor data; it
supports the high performance of the s-CAE and s-CNN mod-
els shown in Fig. 5(a-b). Some normal data points being close
to the ‘no powder flow’ state may indicate that the sound of a
feeder nearly empty is similar to the sound of an entirely empty
one. In contrast, Fig. 5(e)’s visualization aligns with the test
results of the microphone sound-based models failing to detect
and classify the powder flow anomalies. The similarity between
the ‘no powder flow’ and ‘feeder clogging’ sound samples, al-
most merging into one cluster as opposed to the separately clus-
tered ‘no gas flow’ sound, is interpreted as the basis for the ab-
normality classification results shown in Fig. 5(c).

For the CNN models employed to classify abnormalities, the
application of the Integrated Gradients (IG) technique enables
the interpretation of the classification basis. IG, gaining signifi-
cant attention in the field of explainable artificial intelligence
(XAI), is a deep learning model interpretation method com-
monly used in XAI [30]. It works by attributing the model’s
prediction to its input features based on Eq. (9):

IGi = (xi − x′i ) ×
∫ 1

α=0

∂F( x′i + α × (xi − x′i ) )

∂xi
dα (9)
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Figure 6. CS powder flow diagnostic model interpretation. (a-c) Frequency spectrums of sound where (a) no powder flow, (b) feeder is clogging, and (c) no gas flow.
(d-f) Integrated Gradient (IG)-guided attribution for diagnosing (a) no powder flow, (b) feeder clogging, and (c) no gas flow.

where xi is the input feature, x′i is the baseline, F is the model,
and ∂F

∂xi
is the gradient of the model’s output with respect

to x′i . Consequently, the IG calculates how each feature con-
tributes to the model’s output, providing valuable insights into
the decision-making process of the CNN models. In Eq. (9),
the × symbol represents element-wise multiplication for the IG
calculation. This evaluates the contribution of each input fea-
ture to the model’s prediction by element-wise multiplying the
gradient of the output with respect to each input by the input’s
deviation from a baseline. This approach details the impact of
individual features on the model’s decisions.

The IG was applied to the s-CNN model, which classifies
three abnormal CS powder flow states with 99.5% accuracy,
to identify which pixels in each Log-Mel spectrum contribute
to the model’s classification. Fig. 6(d-f) displays heatmaps vi-
sualizing the aggregated IG results, along with histograms of

pixels that positively or negatively contribute according to fre-
quency, for each type of abnormality. This can be interpreted
in comparison with the frequency spectra of the corresponding
sound signals shown in Fig. 6(a-c). For instance, the ‘no powder
flow’ abnormality is distinguished by components significantly
emphasized in the 600 Hz to 1600 Hz frequency range. This
IG-based interpretation of the diagnostic model based on the
frequency information can remarkably enhance the reliability
of the CS powder flow diagnostics. Despite these advantages, a
comprehensive analysis of sound signals throughout the entire
CS process remains necessary to accurately identify the spe-
cific reasons behind the specific frequency bands observed dur-
ing the tests. This suggests the potential for explainable sound
monitoring that integrates domain knowledge of the CS systems
with the interpretable framework.
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5. Conclusion

In this work, a stethoscope sound-guided interpretable deep
learning (IDL) framework was developed for powder flow mon-
itoring and diagnosis in cold spray additive manufacturing. The
sound signal data was collected from a stethoscope mounted
on the powder feeder unit of the LPCS machine, allowing the
capturing of distinctive sound signals from the vibratory valve
inside the powder hopper. Utilizing IDL modeling, three pow-
der flow anomalies, namely 1) no powder flow; 2) feeder clog-
ging; and 3) no gas flow, were successfully diagnosed from the
trained modeling. Moreover, the findings guided by stethoscope
sound signals were compared with data obtained from the exter-
nal microphone. This work yields the following conclusions:

• The use of stethoscope sensor sound, which is less af-
fected by ambient noise compared to typical microphone
sensors, can significantly enhance the robustness of mon-
itoring models in the noisy CS process environments.
• The two-stage CS powder flow model demonstrates ex-

ceptional performance in sensitively detecting anomalies
and classifying the types of abnormalities.
• Visualization of data and decision-making based on the

trained IDL model can substantially improve the reliabil-
ity of in-situ powder flow diagnostics in CS applications.

Future directions will focus on refining and enhancing these
modeling endeavors for powder flowrate monitoring during the
CS process, ultimately aiming to capture in-situ particle depo-
sition efficiency (i.e., the ratio of the actual amount of pow-
der deposited onto the substrate to the total amount of pow-
der sprayed). In our pursuit, it is critical to evaluate the pro-
posed approach under various powder size distribution and en-
vironmental conditions (e.g., humidity) to guide future research
endeavors effectively. We envision that these modeling frame-
works can significantly contribute to advancing the understand-
ing and optimization of CS additive manufacturing processes.
Furthermore, our approach can be extended to other powder-
based additive manufacturing processes such as Directed En-
ergy Deposition (DED), in which micron-scale powders are fed
through a cladding nozzle at subsonic velocities for material
consolidation.
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